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Phase Transition for a One-Dimensional
Lattice Gas with Hard Core

David Klein' and Wei-Shih Yang?
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Existence of a phase transition is proved for a one-dimensional lattice gas with
long-range interaction and nearest neighbor exclusion.
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1. INTRODUCTION

Using several versions of Peierls’ method,® Dobrushin'? established the
existence of phase transitions for various lattice gas models of dimension
d>= 2. Included in ref. 2 was a proof of the existence of a phase transition
for a lattice gas with hard core. Subsequently, Frohlich and Spencer,®
using a substantial modification of this basic contour method, proved the
existence of a spontaneous magnetization at low temperature for the one
dimensional Ising model with 1/r? interaction energy (but no hard core).

In this paper we combine the techniques of ref. 2 and 3 to give a proof
of the existence of a phase transition for a one-dimensional pair potential
with hard core whose interaction strength decays like 1/r*. The imposition
of the hard-core condition on the Hamiltonian has the effect of making the
Hamiltonian less symmetric with respect to the values of the occupation
variables {x,} (see (1.1) below).

We note that significant advances in the study of one-dimensional
long-range ferromagnetic lattice spin models have been made since the
publication of ref. 3. Applications of percolation theory, using the
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Fortuin—Kesteleyn representation, to one-dimensional Ising and Potts
models were recently given in ref. 7, which also contains a useful summary
and listing of other related work on one-dimensional models.

Let & denote the set of “allowable” configurations of the form x =
{x;}:c z with x; =0 or 1 such that x,x,,, =0 for all i ¢ Z. The Hamiltonian
for volume [ —L, L] is given by

1 1y
o= Hm=- Yy Sy oy

) TR
N e iisL e 11— Jl

(1)

L
X;—p Y X (1.1)
i=—L

for x € ¥, where for |i| > L we will assume the boundary condition

1 if iiseven
Y= {o if iisodd (12)
or alternatively
1 if iisodd
= 1.3
o {0 if iiseven (13)

If x¢%¥, we may assume H(x)= oo with the convention exp[ —f-0]=0
when f>0. The parameter u in (1.1) represents the chemical potential for
this lattice gas model. For fixed u and inverse temperature B, denote by
o F (B, p) [respectively <->5 (B, u)] the finite-volume equilibrium states
for fH,(x) with boundary condition (1.2) [respectively (1.3)]. We can
now state the main result. .

Theorem 1.1. Let a=3,.,(—1)/*"/j% If p>«, then for all B
sufficiently large

xedf (Bou)>1)2 (1.4)
and
{xodr (B, n)<1/2 (L5)

uniformly in L.

From Theorem 1.1 it follows by the methods of Ruelle,® for example,
that two distinct extremal Gibbs states exist for H, B, ¢ when u>a and
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when f is sufficiently large. From Dobrushin’s uniqueness theorem’ (see
also ref. 6) it follows that the Gibbs state is unique if

By ji<2

jz2

Hence the system experiences a phase transition.

The proof of Theorem 1.1 is given in Section 3, where reference is
made to some results of Frohlich and Spencer.®) We list these results in
Section 2 for the convenience of the reader.

2. REVIEW OF FROHLICH AND SPENCER®

In this section we list some definitions and theorems of Frohlich and
Spencer® which will be used in the proof of Theorem 1.1.
Let

Hi(o)=Y, J(l—0,0)) (2.1

i<j
where g, = +1forie[—L,L], 6,= +1 for |i| > L, and for fixed ¢ >0,

¢ it Ji—jl=1
’:].:

i Jimj]>2 22

We note that Frohlich and Spencer considered the case ¢=1, but the
theorems below are valid for (2.2) with no significant changes in the proofs.

Let Z* be the lattice of nearest neighbor bonds, b= (i, i+ 1) for ie Z.
Each configuration ¢ of spins uniquenly specifies a contour (or collection
of spin flips) I'=I(c)=Z} = Z*n[~L—1, L+ 1] with

bel iff o,0,,,=—1 (2.3)

The collection of such contours with even cardinality is in one-to-one
correspondence with possible configurations. Thus, we may make the
identifications

A (o)=H,(I'=H,(I(0)) (24)
Definition 2.1. Let y={(i;, i, +1),.., {i,, i, + 1)} be an arbitrary
collection of spin flups with i, <i, ., for k=1,.,n—1.
(a) Letd(y)=i,+1-—1,.
(b) Let I(y) be the open interval (iy, i, +1).
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(c) Let I, be the open interval (i, i, ., + 1).
(d) Let I, be the closed interval [iy, ir,, +1].
(e) Let

L(y)= i {[lnz(ik+1 _ik)1+1}

where [In,(i,,, —i;)] is the integer part of the logarithm base 2 of
Iy +1 7 .

(f) The distance dist[(iy, i, + 1), (i, i,, + 1)] between the spin flups
(ix, i, +1) and (i, i, +1) is [i, —i.], the distance in R between the
midpoints of the spin flips.

For any M >0, any even collection of spin flips I” can be partitioned
into disjoint subsets y,, 7,,.. called primitive contours, which satisfy the
following condition.

Condition D:

(a) The cardinality of each y, iseven, J,»,y,=1,and y, Ny, =
for a # o'
(b) dist(y., y,) = Mmin(d(y,), d(7.))]** for a# o

(c) If ycy, and dist(y, y,\y) = 2M d(y)*?, then card (y) is odd for
all a.

In Condition D, M is independent of /" and each y,, and will be
chosen later.

The following results, among others, were proved by Frohlich and
Spencer® and were used by them to prove the existence of a phase
transition for the Hamiltonian (2.1).

From Theorem B, Lemma 2.1, and the remark in Section 3 of ref. 3,
one obtains the following.

Theorem 2.1. If y, satisfies Condition D(c) and card (y,) is even,
then

ﬁL(’Yu) > L(’sz)

_ b
(In M)?
where ¢, >0 and independent of M and y,.

The proof of Theorem C in ref. 3 establishes the following,

Theorem 2.2. There exists a constant ¢, independent of R and L
such that
card{yeZ¥: L(y) <R, I(y)50} < ¢?®

Theorem 2.3 below is Theorem 4.1 of ref. 3.
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Theorem 2.3. Let I'=yuy, Uy, U - satisfy Condition D. Then
there is a constant ¢, independent of M such that

InM

A(I\y)+ H(y)- A(I') <, 7 L)

The following corollary comes from the proof of Theorem 4.1 in ref. 3.

Corollary 2.4. With the same hypotheses as in Theorem 2.3, let 7,
be defined for y as in Definition 2.1¢ and let

A, = {(i, j)lie I(y,) for some y, such that I(y,)=I, and j¢ I, }
Define

1 if (i, ) ed,

X ads j)z{() if (i, j)¢ A,

Then
.. .. c . R
2% Jilaalis N+ x4 )] <A_;ln(lk+1 —Ir)
i< j

for some constant ¢, > 0.

3. PROOF OF THEOREM 1.1

Lemma 3.1. For an allowable configuration xe%, the
Hamiltonian H(x) given by (1.1) for volume V'=[—L, L] with boundary
condition (1.2) is equal, to within an additive constant, to

Hi(o)=3 J(1-0,0,) (3.1

i<j
under the transformation

o, =(=1)"(2x;—1) (3.2)

The boundary condition (1.2) becomes ¢, = 41 for |i| > L and

U—ao if ji—jl=1 .
J. =
R TV A G

with o given in Theorem 1.1.
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Proof. Let |I'(x)| be the number of pairs (x;, x,,,) in x such that
x; =x;,; and let |I(x)| be the number of pairs (x;, x;,,) such that x, #
X1 L i+1e[—L—1,L+1]. Then with the boundary condition (1.2),

2 EL: x;+1— (=1 =|Ix) (3.4)

i=—L

and |I'(x)| + |I'(x)| =2L + 2. Thus,

L 1 - 1+ (—1)*
b ee D D"
i=—L 2 2
Equation (1.1) then becomes
(=1)"+/ -
H(x)= -4 XX + 2u I (x)| +¢; (3.5)

. )
whev, 11—l
i ji> 1

where ¢, is a constant and where
U,={( j)li<jiorjisin [—L, L]}
Substituting (3.2) into (3.5) gives
Hy(x)=H (o)=— Y 0,0li—jl 2+2u—a)|[(0)+c; (3.6)
(Lj)e Uy
li=jl>1
where ¢, is a constant and |I'(¢)| = |I(x)| is the number of pairs (s, Gii1)

in ¢ such that g, %0, for i, i+ le[—~L—1, L+ 1]. Thus, we may write

Y (0,—0)*=4I(0)|

i<j

li—Jjl=1
or
1
o) =—= Z 6,6;+¢; (3.7)
(i,j)eUs
li—jl=1

where c; depends only on L. Substituting (3.7) into (3.6) gives

H(o)= — Z Giaj(i_j)ﬁz"(.“_a)
(hj)ye UL
li=j1>1
X Y 0,0,+2(p—a)c;+cy (3.8)

(LeUL
li—Jjl=1
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Rewriting (3.8) gives us

H(o)= Y J,(1—0,6))—c,

i<
where ¢, = ¢y +2(u—o)cs = X he v, Iy

Remark 3.1. If the boundary condition (1.2} is replaced by (1.3), the
proof of Lemma 3.1 is modified by replacing (3.4) by

L
2 Y x,=|(x)|-1-(=1"
i=—~L
Remark 3.2. Our use of |I'(x)| and |T(x)| in the proof of Lemma 3.1
resembles the use of analogous quantities by Dobrushin'® for higher
dimensional models.

Definition 3.1. The configuration o= {6,},., with g,=+1 is
allowable if x = {x,};. is allowable, where

xiz("l)i0i+1/2

A set of spin flips /" defined by (2.4) is allowable if I" corresponds to an
allowable configuration o.

As in (2.5), we make the identification H, (c)=H, (I") when ¢
corresponds to I via (2.4) and when ¢ and I are allowable.

Remark 3.3. It is easily checked that I'={(i;,i; +1)..., (2>
i»,+ 1)} is allowable if and only if the distance between any two con-
secutive spin flips in 7" is an odd integer and both L —i,, and i{; + L+ 1 are
odd integers in the case that L is odd, and L —i,, and i, + L+ 1 are even
in the case that L is even.

Definition 3.2. Let y={(i;,i; + 1)y, (lawsiza+1)} I be a
primitive contour for the allowable contour I Denote by (I'\y)" the
collection of spin flips obtained from /"\y as follows: Translate all spin flips
in I"\y which lie between i, + 1 and i, , , one unit to the left if k¥ is odd and
1 <k <2n. All other spin flips in I"\y remain unchanged.

It is easily checked that if /" is allowable and y = I' is primitive, then
(I"\y)' is allowabile.

Remark 3.4. The transformation which takes I'\y to (I\y)" is
related to the transformation T, of Dobrushin,”’ who considered
Hamiltonians with hard core in Z? for d> 1. Our transformation is essen-
tially a }y|/2-fold composition of one-dimensional versions of Dobrushin’s
T;.
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Lemma 3.2. Let I' be any allowable contour and let y<I” be
primitive. Then
- ~ In M
[H(I\y) = HLUI\) Y < 0(M) —= L(Y) (3.9)

where 6(M) is independent of /" and y, and lim,, _, ,, (M) =0.
Proof. For an arbitrary collection of spin flips I';, define for i < j

G, )= 1 if | n[i j]lisodd
b =0 i, G /7] is even

Then

AL\ 1= AU\ =2 3 Tyt D = Xl )]

i<j
=) Uy, 4 ) (3.10)
i<j
For the primitive contour y, let I, and [, be as in Definition 2.1. From
Definition 3.2
Xf\y(ia j):X(F\y)’(i’ J) (3.11)
when i< j, i, jel,, and k is even. Thus,
) U, y, i, j)=0 (3.12)
l'JElk\(l[_k<+le1_k—1J
when k is even. Hence, we may write
YU ni =3 Y ULy )+Y*UT,yi))  (313)
i<j k odd i,_je[__k
i<j

where the sum > * in (3.13) is over all i < j with not both i and j in [, for k
odd or in [,\({, ., vl ;) for keven If i+1, j+1el, ori jel, for k
odd, then

Xl =G+ 1, j+1) (3.14)
and

Jij:']i+l,j+l
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It follows that for k£ odd,

Z U(Fs Vs i’ ]) <2 Z JiijF\y(ik’j)

i,_ieik jel_k
i<j J# i
+2 Z S 1 Xy U iy +1) (3.15)
jek
J#F s+ 1

If j¢ I(y,) for any primitive y, = I, then
Xrwli: )=0=xruU—Li +1)
Thus, the right side of (3.15) is bounded by

2 Y Tluai )+ 14U )] (3.16)

i<j

Applying Corollary 2.4 to (3.16) then gives

.o Cyq In M . .
T, —1 — 3.17
T U | <y e ) G.17)
i<j
Hence,
. ¢y InM
VA J)l < —— L(y) (3.18)
kéd i,jzeik InM M
i< j

To bound the last sum on the right side of (3.13) we introduce the
following terminology. Define jeZ to be a “bad” point if there exists a
primitive contour y, = I, with k odd such that (j, j+ 1)< y,. If a point in
Z is not bad, we say it is “good.”

It is easily checked that if i and j are both good or both bad, then

Xf\y(i’ J)= X(F\y)’(i7 )]

Hence 3°* U(T, y, i, j) is reduced to a sum over pairs i, j, where i and j are
not both good or not both bad and not both in any I,. It follows that

S5 ULy, j)‘ <2y [ S JyGalis )+ 1 i))} (3.19)

i<j
Applying Corollary 2.4, we obtain

in M
lZ* U(r, v, i, j)‘ <1—:—“A—4—9M—— L(y) (3.20)
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Now combining (3.13), (3.18), and (3.20) gives (3.9) with 6(M)=c/ln M
and ¢>0.
Theorem 3.3. Let yu>a. For any allowable contour I” and any
primitive y <= I,
¢y In M

HUD) = (I 9Y) > LO) {5~ e+ o0 52 a2

where ¢, ¢; >0 and 6(M) is the same as in Lemma 3.2.

Proof. From Theorem 2.3,

~ ~ - In M
H(y)+ HI'\y)~ H(I') < ¢3 i L(y) (3.22)
From Lemma 3.1 we also have
H(I') = H(I) (3.23)

whenever I is allowable and when the constant ¢ in (2.2) equals u—oa.
Combining Lemma 3.2 with (3.22) and (3.23) gives

lnML(y)

1 .
— H(T) = 3(0M) 520 L) + B ) + ) < 03 o

or

~ 1
H) = H(0)) > )~ Tey + 50152 LG) (324)

The proof is completed by combining (3.24) with Theorem 2.1.
As an immediate consequence of Theorem 3.3, we have the following.

Corollary 3.4. With the same hypotheses as in Theorem 3.3,
H(I)—H((I'\y)") = ¢L(y) (3.25)

where ¢ >0 for M sufficiently large.

Proof of Theorem 1.1. From Lemma 3.1 we may write

Lo gy e (D)
0L Zrefﬁmr)

: (3.26)

where the sums are over allowable contours I” and where

1 if ao()=—1

X"(m:{o it oo(l)=+1
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and o,(I") is the spin value of ¢, in the configuration according to I
Clearly yo(I")=0 unless there is a primitive contour y =" with I(y)30.
Denote such a primitive contour by v, so that I'=vy, Uy, U --- satisfies
Condition D, with 0 € I(y,-). Then by Corollary 3.4 with M large enough so
that ¢ >0,

% <1 _ 0’0>1f < {Z e~ﬁeL(7r)e—ﬂH((I‘\vr)‘)XO(F)]/Z e FHUD)

r I

< z e PeL(y) Z elfﬂ((f\v)')/z e RHD)

y:0el(y) iy=yr r
< Y e fuw (3.27)
y:i(y)e0

where all sums involving I" are over allowable contours. From Theorem 2.2
it follows that

1
=0y} < Z g " PeRpe(R+ 1) (3.28)
2 R=1
and
1 {l—agrf <3 (3.29)

for f sufficiently large. Inequalities (3.28) and (3.29) hold uniformly in L.
Since oy =2xq—1, (3.29) implies (1.4). Repeating all of the above
arguments with the boundary condition (1.2) replaced by (1.3) results in
(1.5).
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